High-Resolution Infrared Spectrum of the v_1 Band of η^5 -C₅H₅NiNO

Chandana Karunatilaka,[†] Ranga Subramanian,[‡] Davian Pedroza,[†] Deanne J. Idar,[§] and Stephen G. Kukolich^{*,†}

Department of Chemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, and Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545

Received: March 13, 2007; In Final Form: May 9, 2007

Gas-phase rotational constants and distortion constants have been determined for the v_1 (v = 1) excited vibrational state of cyclopentadienylnickel nitrosyl (C₅H₅NiNO) using a high-resolution Fourier transform spectrometer system at Kitt Peak, Arizona. The rotationally resolved lines have been measured for the C-H symmetric stretch vibration ($\nu_1 = 3110 \text{ cm}^{-1}$). In the present analysis, over 150 lines have been assigned and fitted using a rigid-rotor Hamiltonian with centrifugal distortion. The vibrational band center, excited-state rotational constants, and distortion constants derived from the measured spectrum for this prolate symmetrictop molecule are $v_0 = 3110.4129(4) \text{ cm}^{-1}$, $A' = 0.14328(8) \text{ cm}^{-1}$, $B' = C' = 0.041285(1) \text{ cm}^{-1}$, $D_{J'} = 0.041285$ 0.078(1) kHz, $D_{JK'} = 2.23(4)$ kHz, and $D_{K'} = -2.63(2)$ kHz, respectively. Several different combination differences, with a common upper state, were calculated for different K stacks for the observed spectra, and the consistency of the lower state rotational constants obtained provided further support for the current assignment. The ground-state rotational constant (B'') derived from this combination differences analysis agrees with the previously obtained Fourier transform microwave value to within 0.15%. However, groundstate rotational constants, A'' and B'', have been fixed in the present analysis to avoid correlation effects and to get more accurate results. The new measured parameters are compared with the previously obtained results from Fourier transform microwave and infrared spectroscopy measurements. The C-H vibration stretching frequency and rotational constants were calculated using density functional theory calculations, and these were quite helpful in resolving ambiguities in the fitting procedure and for initial assignments of measured lines.

Introduction

There has been a considerable amount of interest in π -bonded organometallic transition metal complexes since the initial discovery and characterization of ferrocene.^{1,2} These π -bonded transition metal complexes have played an important role in the development of organometallic chemistry. The complex, cyclopentadienylnickel nitrosyl (CpNiNO) appears to be one of the first organometallic complexes to be studied using microwave spectroscopy.³ This complex (CpNiNO) has been found to be an excellent catalyst for cyclo-oligomerization of dialkenes^{4,5} and polymerization of terminal alkynes.⁶

Studies using various different isotopic species have revealed that this complex has a linear Ni–N–O system and a five-fold axis of symmetry (C₅) orthogonal to the C₅H₅ plane.^{7,8} The $C_{5\nu}$ symmetry axis was established by the correlation of line intensities with the calculated nuclear spin statistics of the molecule. Even though an earlier electron diffraction study⁹ had suggested a bent Ni–N–O system, Ronova and co-workers¹⁰ later showed that the Ni–N–O moiety is linear and that the structure is consistent with the gas-phase microwave structure. The nuclear quadrupole coupling constant for ¹⁴N (I = 1) has been determined using Fourier transform microwave spectroscopy (FTMW) by two groups.^{11,12} The analyses using two different models (Townes–Daily model¹¹ and Pauling model¹²) indicate that the Ni–N bond exhibits primarily double-bond character.

Several research groups have studied low-resolution infrared spectra of this complex in different phases to assign various infrared and Raman active frequencies.^{13–16} Moreover, photoelectron studies^{17,18} have yielded orbital energies and ionization energies of the CpNiNO complex.

In the present work, the high-resolution infrared spectrum of CpNiNO has been recorded in the frequency range of 2500-5700 cm⁻¹. The symmetric-top structure of CpNiNO has made it easier to analyze this high-resolution infrared data. There are 33 fundamental vibrational modes of CpNiNO, which can be described with their symmetry and activity as follows; six A_1 -IR active/Raman depolarized, one A2-IR/Raman inactive, seven E_1 -IR active/Raman depolarized, and six E_2 -Raman depolarized, where the A_1 , A_2 and E_1 , E_2 modes are singly and doubly degenerate,¹³ respectively. In the present analysis, the rovibrational spectrum for the A_1 symmetric C–H stretch (ν_1 vibrational mode) has been analyzed using a Fourier transform spectrometer (FTS) system available at Kitt Peak Arizona. For the v_1 stretch mode, the transition dipole moment lies along the main symmetry axis (see Figure 1), so this gives rise to a parallel (//) type band. Various different researchers have measured this v_1 symmetric stretch to be between 3110 and 3118 cm⁻¹ for different phases. However, the report of a detailed infrared analysis in the gas phase by Feltham and co-workers¹³ located the ν_1 C–H stretch at 3110 cm⁻¹.

^{*} To whom correspondence should be addressed. Fax: 1-520-621-8407. E-mail: kukolich@u.arizona.edu.

[†] University of Arizona.

[‡] Tulane University.

[§] Los Alamos National Laboratory.

Figure 1. Molecular structure of cyclopentadienylnickel nitrosyl; the CpNiNO obtained from the DFT calculations is shown. The symmetric C–H bond stretching for the ν_1 mode and the C₅ symmetry axis are also illustrated.

 TABLE 1: Experimental Parameters and Settings for the

 FT Spectrometer

spectral coverage	1780-5700 cm ⁻¹
resolution used (fwhm)	0.006 cm^{-1}
number of coadded scans	10
recording time	$\sim 1 h$
absorbing path length	1.38 m
aperture diameter	3.0 mm
source	quartz halogen
beam splitter	KCl
detectors (2)	InSb
optical filters	wedged Ge
*	

The present work has yielded rotational constants and distortion constants for the upper vibrational state, in addition to a more precise value for the v_1 symmetric stretching vibrational mode. A comparison is made between theoretical calculations and the present, new, high resolution infrared data, and this is expected to aid in understanding the structure of this molecule in the vibrational excited state.

Experiment

The preparation of the CpNiNO sample was based on a published synthesis procedure by Piper et al.¹⁹ In a typical synthesis, a suspension containing dicyclopentadienyl nickel (nickelocene) in dry *n*-pentane was prepared inside a dry box. This was capped with a rubber septum, and NO gas was passed through this suspension for several hours with constant stirring while keeping the reaction mixture at ice temperature. The resulting red color solution, in the presence of sludge, was vacuum distilled with a short distillation arm to obtain the title compound, CpNiNO, as a bright red liquid. The product was isolated in a small round-bottom flask at dry ice temperature. The CpNiNO complex has about 10 Torr of vapor pressure at room temperature, and this is sufficient for gas-phase IR spectroscopy.

The vibration-rotation spectra were recorded using a 1 m FTS located at the McMath-Pierce facility of the National Observatory (NSO) at Kitt Peak, Arizona. The basic experimental details and experimental setup are given in Table 1.

To collect the absorption spectra of CpNiNO, a cylindrical glass sample cell (1.38 m long) was placed between the infrared source and the entrance aperture of the FTS, with the ends of the sample cell capped with CaF_2 windows having O-ring seals.

Figure 2. Example spectrum for the 3040-3058 cm⁻¹ region, showing (a) reasonably well-resolved transitions and (b) Q-branch transitions near 3056 cm⁻¹, which are not resolved.

This sample cell was constructed with a valve at one end to admit the sample. A T-joint was attached to this adjustable valve, and one end was connected to two liquid nitrogen-cooled traps followed by a vacuum pump. A small glass sample cell, with another valve containing CpNiNO, was attached to the other end of this T-joint to introduce the CpNiNO vapor. The absolute accuracy of the instrument was 0.056 cm⁻¹, based on calibrations using a HeNe single-frequency reference laser and measuring near-infrared acetylene lines, with well-known frequencies. Quick scans were taken at different concentrations and pressures of CpNiNO before finding the "best" set of conditions. Once optimized, the spectra were recorded with the basic set up parameters (see Table 1). Before introducing the sample of CpNiNO to the main sample cell tube, a highresolution spectrum of the empty cell was recorded under the same basic experimental conditions to allow subtraction of a background. All of the spectra were recorded at room temperature. A sample spectrum in the 3040-3058 cm⁻¹ region is shown in Figure 2.

Results

Theory. Different theoretical methods and basis sets were tested in the quest to find the best calculated structure for CpNiNO. The final method used was density functional theory (DFT) with Becke's three-parameter functional with the nonlocal correlation provided by Perdew and Wang (B3PW91).^{20–22} The following basis sets were used to compare the structural results: (i) Los Alamos double- ζ basis set, (LANL2DZ);^{23–25} (ii) Dunning/Huzinaga valence double- ζ on carbon, nitrogen, oxygen, and hydrogen atoms with Stuttgart/Dredsen electron core potentials on nickel atom (SDD); and^{7,26} (iii) Hay–Wadt (*n* + 1) basis set with effective core potential for nickel²⁷ and split-valence plus polarization basis set (SVP)^{28,29} for carbon, nitrogen, oxygen, and hydrogen atoms.

All geometry optimization methods were followed by a frequency analysis to ensure that the stationary points found were at least local minima. The B3PW91 calculations with different basis sets predict structural parameters and rotational constants closer to the experimental values. These calculations were performed using the options vibrot and anharmonic. These options may be used along with the optimization and frequency routines in Gaussian 03 to calculate zero-point energies, anharmonic frequencies, and anharmonic vibration–rotation couplings.^{30–33}

Results from the theoretical calculations, using the options vibrot and anharmonic, were used to aid the assignments of quantum numbers for the various transitions. These calculations not only predict the rotational constants for the equilibrium (r_e) structure of the molecule but also predict the constants for the ground (r_0) and the excited vibrational states for the molecule.

We found that the preferred method and the basis set used to predict the geometry and the structure of CpNiNO is B3PW91 with the Hay–Wadt (n + 1) basis set and an effective core potential for nickel and the SVP for the carbon, nitrogen, oxygen, and hydrogen atoms. This method and the basis set combination were preferred because the harmonic frequencies of the molecule were closer to the experimental gas-phase lowresolution infrared spectrum values for the molecule, after scaling the theoretical values with a standard correction factor of 0.9607.³⁴ The second reason for preferring this method and basis set is that the rotational constant, B (=C) for the r_0 structure was closer to the measured value from the gas-phase FTMW spectroscopy measurements.¹¹ All of the calculated values are given in Table 3 along with the respective current and previous experimental values.

All of the theoretical calculations were performed an on HP/ Compaq Alpha supercomputer (AURA) using Gaussian-03 Programs,³⁵ which is available at the University of Arizona.

Data Analysis. Line lists for the center frequencies for the observed transitions were generated for this complex using the software PC-GREMLIN. As part of the process of selecting the transitions for the CpNiNO molecule, the measured spectrum was ratioed to the empty cell spectrum recorded under the same experimental conditions. This spectrum was used for the analysis using PC-GREMLIN. To double check, the transitions could be correctly attributed to be the CpNiNO complex; the line frequencies were cross-checked with the Hitran³⁶ database for all other listed molecules in the infrared frequency range of interest $(3110-3120 \text{ cm}^{-1})$.

All of the assigned transitions for CpNiNO, which were used in the fit, are listed in Table 2. Out of many lines observed (close to 1500), 155 lines were carefully selected to be used in the fitting program, SPFIT,³⁷ which employs a standard rigidrotor Hamiltonian with centrifugal distortion.³⁸ Because the uncertainties for derived parameters are normally underestimated when using SPFIT, a program, PIFORM,³⁹ was used to correct the fitted parameter uncertainties to obtain values of the various constants with conventional standard errors.

Transitions obtained for the prolate symmetric top, CpNiNO, were fitted using six adjustable parameters, namely, (i) rotational constants for the excited vibrational state (A', B'), (ii) centrifugal distortion constants for the excited state $(D_{J'}, D_{JK'}, \text{ and } D_{K'})$, and (iii) pure vibrational frequency (the energy difference between v = 0 and v = 1 level) for the v_1 mode. In the fitting analysis, the ground-state rotational constants (A'', B'') and the distortion constants $(D_{I''}, D_{IK''}, \text{ and } D_{K''})$ were held fixed to the previously obtained more precise values from FTMW measurements¹¹ and the current DFT values. In addition, effects of the nuclear quadrupole coupling due to ¹⁴N were ignored as the splitting due to N nuclear quadrupole interaction is much smaller than the resolution of the FTS instrument (0.006 cm^{-1}). The fitted parameters from the least-squares fit along with the calculated values and previous experimental values are presented in Table 3 for comparison.

The first fundamental vibrational band corresponding to the A_1 symmetric stretch of C–H has been analyzed. As mentioned above, this band is due to the transition dipole moment parallel

to the *z*-axis (symmetry axis) and gives an IR-active, parallel (//) band. Therefore, the transitions obey the parallel selection rules $\Delta K = 0$ with $\Delta J = \pm 1$ for the $K' = 0 \leftarrow K'' = 0$ transition and $\Delta J = 0, \pm 1$ transitions for $K \neq 0$. The intensities of these lines are governed by the Hönl–London factors.⁴⁰ The energy expression used for the *Q*-branch transitions is shown in eq 1 below.⁴⁰ Note that the distortion constants are not included in this equation, but symmetric-top quartic distortion constants (D_J , D_{JK} , and D_K) were included in the fitting procedure.

$$\nu_{\rm o}^{\rm sub} = \nu_{\rm o} + \left[(A_{[\nu]}' - A_{[\nu]}'') - (B_{[\nu]}' - B_{[\nu]}'') \right] K^2 \quad (1)$$

In eq 1, A' and B' represent the rotational constants for the upper vibrational state and A'' and B'' are the rotational constants for the ground vibrational state. The whole parallel band will appear to consist of one P-, one R-, and the blended-line Q-branch. Each of these lines consists of a number of components (J + 1 in the R-branch and J in the P-branch). This PQR-branch structure was readily observed in the current spectra indicating that this molecule is symmetric top. Altogether, 88 P-branch transitions and 67 R-branch lines for various K-stacks were fitted in the current analysis with a standard deviation of 0.0022 cm⁻¹ (see Table 2). However, no Q-branch transitions were well-resolved and hence were not included in the current analysis. The equations for the *P*- $(\Delta J = -1)$ and the R- ($\Delta J = +1$) branches are similar to eq 1, except for the additional terms, which are B'[(J+1)(J+2)] - B''[J(J+1)]for the *R*-branch and B'[(J-1)J] - B''[J(J+1)] for the P-branch.

Discussion

The high-resolution infrared spectrum of the v_1 band of the π -bonded transition metal complex, CpNiNO, has been measured and analyzed. The analysis yields the rotational constants (A', B') for the vibrational excited state, distortion constants for the excited state, and the fundamental v_1 C–H stretching frequency for the CpNiNO molecule. The reported values agree well with the previously measured experimental and calculated values (see Table 3) to within the experimental uncertainties. A convincing set of combination differences involving a common upper level (LSCD) have been calculated for several different transitions for various different K-stacks. These calculations yielded lower state rotational constants (B'') and as can be seen in Table 4; the consistency of the values obtained for B'' further supports the validity of the current assignment and the fit results. These combination differences have been calculated with respect to seven different, common upper rotational states (see Table 4). However, the deviations in the ground rotational constants from this analysis are about 2 MHz when compared to the previously obtained FTMW value.¹¹ Nevertheless, this level of agreement is as good as we would expect considering the experimental errors for the measured IR lines. The ground-state rotational constants, A'' and B'', along with the ground-state distortion constants were held fixed to the FTMW results in the current analysis to obtain more reliable parameters for the excited state. The present study also provided the fundamental C-H stretching frequency, 3110.4129(4) cm⁻¹, and we believe that this value is much more accurate than the previous low-resolution infrared value obtained by Feltham and co-workers.13

The rotational constants, A' and B', obtained for the upper vibrational state from the present study are 0.14328(8) and 0.041285(1) cm⁻¹. Furthermore, the excited-state rotational constant B' obtained experimentally is 0.00072 cm⁻¹ lower than

TABLE 2: Measured and Calculated Vibration-Rotation Transition Frequencies for CpNiNO and the Fit Residuals (M-C)^a

													- I.				- /
J'	Κ'	v'	$J^{\prime\prime}$	<i>K</i> ″′	$v^{\prime\prime}$	measured	calculated	М-С	J'	K'	v'	J''	<i>K''</i>	v''	measured	calculated	М-С
45	0	1	46	0	0	3105.2096	3105.2093	0.0004	11	1	1	12	1	0	3109.3191	3109.3193	-0.0002
45	1	1	46	1	Õ	3105.2069	3105.2073	-0.0004	11	0	1	12	0	0	3109.3223	3109.3210	0.0013
45	2	1	46	2	Õ	3105.2020	3105.2016	0.0005	8	1	1	9	1	0	3109.6105	3109.6097	0.0008
45	3	1	46	3	0	3105.1920	3105.1920	0.0000	8	0	1	9	0	0	3109.6112	3109.6115	-0.0003
44	2	1	45	2	0	3105.3439	3105.3442	-0.0003	7	3	1	8	3	0	3109.6898	3109.6902	-0.0004
44	1	1	45	1	0	3105.3502	3105.3500	0.0003	7	2	1	8	2	0	3109.6985	3109.6988	-0.0003
44	0	1	45	0	0	3105.3510	3105.3519	-0.0009	7	1	1	8	1	0	3109.7040	3109.7040	0.0000
43	1	1	44	1	0	3105.4915	3105.4913	0.0002	7	0	1	8	0	0	3109.7055	3109.7057	-0.0002
43	0	1	44	0	0	3105.4932	3105.4932	0.0000	1	1	1	2	1	0	3110.2421	3110.2421	0.0000
42	5	1	43	5	0	3105.5870	3105.5869	0.0001	1	0	1	2	0	0	3110.2449	3110.2439	0.0010
42	4	1	43	4	0	3105.6035	3105.6032	0.0003	1	0	1	0	0	0	3110.5005	3110.4955	0.0050
42	3	1	43	3	0	3105.6159	3105.6162	-0.0003	2	1	1	1	1	0	3110.5771	3110.5750	0.0021
42	2	1	43	2	0	3105.6252	3105.6256	-0.0004	2	0	1	1	0	0	3110.5777	3110.5767	0.0010
42	1	1	43	1	0	3105.6310	3105.6312	-0.0002	3	2	1	2	2	0	3110.6504	3110.6497	0.0007
42	0	1	43	0	0	3105.6232	3105.6331	-0.0099	3	1	1	2	1	0	3110.6550	3110.6550	0.0000
41	1	1	42	1	0	3105.7701	3105.7699	0.0002	3	0	l	2	0	0	3110.6575	3110.6567	0.0008
41	0	1	42	0	0	3105.7720	3105.7718	0.0002	4	3	1	3	3	0	3110.7196	3110.7197	-0.0001
40	4	1	41	4	0	3105.8802	3105.8795	0.0007	4	2	1	3	2	0	3110.7280	3110.7284	-0.0004
40	3	1	41	3	0	3105.8922	3105.8923	-0.0001	4	1	1	3	1	0	3110.7335	3110.7336	-0.0001
40	2	1	41	2	0	3105.9012	3105.9016	-0.0004	4	2	1	5	0	0	3110.7355	3110./354	0.0001
40	1	1	41	1	0	3105.9007	3105.9072	-0.0003	7	1	1	0	1	0	3110.9304	3110.9307	-0.0003
40 20	4	1	41	4	0	3105.9151	3105.9091	0.0040	7	1	1	6	1	0	3110.9020	3110.9019	0.0001
39	4	1	40	3	0	3106.0289	3106.0284	0.0000	8	1	1	7	1	0	3111.3047	3111.0354	-0.0010
39	2	1	40	2	0	3106.0271	3106.0376	-0.0005	8	0	1	7	0	0	3111.0349	3111.0372	-0.0003
39	1	1	40	1	0	3106.0425	3106.0432	-0.0003	12	1	1	11	1	0	3111 3152	3111 3165	-0.0013
39	0	1	40	0	0	3106.0569	3106.0451	0.0118	12	0	1	11	0	Ő	3111.3176	3111.3183	-0.0007
38	4	1	39	4	Ő	3106.1468	3106.1504	-0.0036	14	4	1	13	4	Ő	3111.4223	3111.4228	-0.0005
38	3	1	39	3	Õ	3106.1635	3106.1631	0.0004	14	3	1	13	3	0	3111.4350	3111.4350	0.0000
38	2	1	39	2	0	3106.1719	3106.1723	-0.0004	14	2	1	13	2	0	3111.4440	3111.4439	0.0001
38	1	1	39	1	0	3106.1778	3106.1779	-0.0001	14	1	1	13	1	0	3111.4489	3111.4492	-0.0003
38	0	1	39	0	0	3106.1776	3106.1798	-0.0022	14	0	1	13	0	0	3111.4505	3111.4510	-0.0005
37	2	1	38	2	0	3106.3049	3106.3057	-0.0008	17	3	1	16	3	0	3111.6235	3111.6243	-0.0008
37	1	1	38	1	0	3106.3155	3106.3113	0.0042	17	2	1	16	2	0	3111.6322	3111.6332	-0.0010
37	0	1	38	0	0	3106.3148	3106.3132	0.0016	17	1	1	16	1	0	3111.6380	3111.6386	-0.0006
36	3	1	37	3	0	3106.4266	3106.4287	-0.0021	17	0	1	16	0	0	3111.6389	3111.6404	-0.0015
36	2	1	37	2	0	3106.4384	3106.4378	0.0006	22	2	1	21	2	0	3111.9235	3111.9227	0.0008
36	1	1	37	1	0	3106.4435	3106.4434	0.0002	22	1	1	21	1	0	3111.9272	3111.9282	-0.0010
36	0	1	37	0	0	3106.4451	3106.4452	-0.0001	22	0	1	21	0	0	3111.9337	3111.9301	0.0036
33	1	1	34	1	0	3106.8319	3106.8316	0.0003	23	3	1	22	3	0	3111.9678	3111.9676	0.0002
33	0	1	34	0	0	3106.8379	3106.8335	0.0045	23	2	1	22	2	0	3111.9759	3111.9767	-0.0008
31	7	1	32	7	0	3106.9978	3107.0016	-0.0038	23	1	1	22	1	0	3111.9810	3111.9823	-0.0013
31	5	1	32	5	0	3107.0399	3107.0415	-0.0016	23	0	l	22	0	0	3111.9849	3111.9841	0.0008
31	4	1	32	4	0	3107.0560	3107.0571	-0.0011	25	3	1	24	3	0	3112.0724	3112.0/17	0.0008
31	3	1	32	3	0	3107.0680	3107.0695	-0.0015	25	2	1	24	1	0	3112.0819	3112.0808	0.0011
31 21	2	1	32	2	0	3107.0765	3107.0784	-0.0019	25	1	1	24	1	0	3112.0853	3112.0804	-0.0011
21	1	1	32	1	0	3107.0840	2107.0859	-0.0001	25	2	1	24	2	0	2112.0001	2112.0002	-0.0001
20	1	1	30	1	0	3107.0850	3107.3309	0.0007	20	1	1	25	1	0	3112.1318	3112.1309	0.0009
29	0	1	30	0	0	3107.3315	3107.3309	0.0008	20	0	1	25	0	0	3112.1371	3112.1305	-0.0000
26	7	1	27	7	0	3107.6074	3107.6107	-0.0033	27	1	1	26	1	0	3112.1870	3112 1853	0.0008
26	6	1	27	6	0	3107.6475	3107.6316	0.0159	27	0	1	26	0	0	3112.1876	3112.1872	0.0004
26	5	1	27	5	Õ	3107.6493	3107.6499	-0.0006	31	2	1	30	2	0	3112.3623	3112.3617	0.0006
26	4	1	27	4	Õ	3107.6641	3107.6652	-0.0011	31	1	1	30	1	0	3112.3678	3112.3674	0.0004
26	3	1	27	3	0	3107.6765	3107.6774	-0.0009	31	0	1	30	0	0	3112.3692	3112.3693	-0.0001
26	2	1	27	2	0	3107.6858	3107.6863	-0.0005	32	3	1	31	3	0	3112.3951	3112.3945	0.0006
26	1	1	27	1	0	3107.6908	3107.6916	-0.0008	32	2	1	31	2	0	3112.4045	3112.4040	0.0005
26	0	1	27	0	0	3107.6924	3107.6934	-0.0010	32	1	1	31	1	0	3112.4101	3112.4097	0.0004
24	2	1	25	2	0	3107.9192	3107.9203	-0.0011	32	0	1	31	0	0	3112.4120	3112.4116	0.0004
24	1	1	25	1	0	3107.9243	3107.9256	-0.0013	35	3	1	34	3	0	3112.5119	3112.5132	-0.0013
24	0	1	25	0	0	3107.9253	3107.9274	-0.0021	35	2	1	34	2	0	3112.5232	3112.5228	0.0004
22	1	1	23	1	0	3108.1538	3108.1543	-0.0005	35	1	1	34	1	0	3112.5289	3112.5286	0.0003
22	0	1	23	0	0	3108.1555	3108.1561	-0.0006	35	0	1	34	0	0	3112.5309	3112.5306	0.0004
19	2	1	20	2	0	3108.4816	3108.4824	-0.0008	38	4	1	37	4	0	3112.6060	3112.6066	-0.0006
19	1	1	20	1	0	3108.4882	3108.4876	0.0006	38	3	1	37	3	0	3112.6209	3112.6200	0.0009
19	0	1	20	0	0	3108.4826	3108.4894	-0.0068	38	2	1	37	2	0	3112.6279	3112.6298	-0.0019
16	4	1	17	4	0	3108.7821	3108.7834	-0.0013	38	1	1	37	1	0	3112.6361	3112.6357	0.0004
16	3	1	17	3	0	3108.7948	3108.7953	-0.0005	38	0	1	37	0	0	3112.6380	3112.6377	0.0003
16	2	1	17	2	0	3108.8036	5108.8040	-0.0004	- 39	2	1	38	2	0	5112.6628	5112.6628	0.0000

TABLE 2 (Continued)

J'	K'	v'	$J^{\prime\prime}$	$K^{\prime\prime}$	$v^{\prime\prime}$	measured	calculated	M-C	J'	K'	v'	J''	<i>K</i> ″′	v''	measured	calculated	M-C
16	1	1	17	1	0	3108.8089	3108.8093	-0.0004	39	1	1	38	1	0	3112.6691	3112.6688	0.0004
16	0	1	17	0	0	3108.8110	3108.8110	0.0000	39	0	1	38	0	0	3112.6698	3112.6707	-0.0009
12	5	1	13	5	0	3109.1769	3109.1792	-0.0023	44	5	1	43	5	0	3112.7685	3112.7665	0.0020
12	4	1	13	4	0	3109.1944	3109.1942	0.0003	44	4	1	43	4	0	3112.7844	3112.7841	0.0003
12	3	1	13	3	0	3109.2055	3109.2060	-0.0005	44	3	1	43	3	0	3112.7981	3112.7980	0.0001
12	2	1	13	2	0	3109.2152	3109.2147	0.0006	44	2	1	43	2	0	3112.8070	3112.8081	-0.0011
12	1	1	13	1	0	3109.2198	3109.2199	-0.0001	44	1	1	43	1	0	3112.8132	3112.8142	-0.0010
12	0	1	13	0	0	3109.2215	3109.2216	-0.0001	44	0	1	43	0	0	3112.8169	3112.8163	0.0006
11	2	1	12	2	0	3109.3152	3109.3141	0.0011									

^{*a*} All of the frequency values are in cm⁻¹ units and σ_{FIT} is 0.0022 cm⁻¹.

TABLE 3: Structural Parameters Obtained for the CpNiNO Complex Using Least-Squares Fits

	experimen	tal values	theoretical values ^a				
	this study	previous studies	Hay-Wadt	LANL2DZ	SDD		
ν_0	3110.4129(4)	3110 ^b	3144	3194	3191		
$A^{\prime\prime}$	$[0.1459]^{c}$		0.1459	0.1437	0.1436		
$B^{\prime\prime} = C^{\prime\prime}$	$[0.04200487(2)]^d$	$0.04200487(2)^d$	0.04140	0.04002	0.04121		
$D_{J''}$ (kHz)	$[0.08]^d$	$0.08(2)^d$					
$D_{JK''}$ (kHz)	$[2.70]^d$	$2.70(6)^d$					
$D_{K''}$ (kHz)	[0.00]						
A'	0.14328(8)		0.1458	0.1436	0.1435		
B' = C'	0.041285(1)		0.04138	0.04000	0.04119		
$D_{J'}$ (kHz)	0.078(1)						
$D_{JK'}$ (kHz)	2.23(4)						
$D_{K'}$ (kHz)	-2.63(2)						
N	155						
$\sigma ({ m cm}^{-1})$	0.0022						

^{*a*} The theoretical values obtained using the rB3PW91 level; three different basis sets are presented for comparison. The listed values are in cm⁻¹ (unless otherwise mentioned), and error limits are 1σ . Values in brackets were held fixed to previous FTMW and best DFT values. ^{*b*} Frequency obtained from a low-resolution infrared experiment.¹³ ^{*c*} Fixed to DFT value. ^{*d*} The values were held fixed to the gas-phase FTMW values¹¹ during the fit.

TABLE 4: Calculated Lower State Combination Differences(LSCD = Combination Differences with a Common UpperState) for Various Rotational States^a

	frequenc	y (cm^{-1})		
upper J state	R-branch	P-branch	$B^{\prime\prime}$	K state
39	3112.6698	3106.0569	0.041854	0
	3112.6691	3106.0425	0.041941	1
	3112.6628	3106.0371	0.041935	2
38	3112.6380	3106.1776	0.041951	0
	3112.6361	3106.1778	0.041937	1
	3112.6279	3106.1719	0.041922	2
	3112.6209	3106.1635	0.041931	3
	3112.6060	3106.1468	0.041943	4
26	3112.1373	3107.6924	0.041933	0
	3112.1371	3107.6908	0.041946	1
	3112.1318	3107.6858	0.041943	2
22	3111.9337	3108.1555	0.041980	0
	3111.9272	3108.1538	0.041927	1
12	3111.3176	3109.2215	0.041922	0
	3111.3152	3109.2198	0.041908	1
8	3111.0365	3109.6112	0.041921	0
	3111.0349	3109.6105	0.041894	1
7	3110.9647	3109.7055	0.041973	0
	3110.9620	3109.7040	0.041933	1
	3110.9564	3109.6985	0.041930	2

^{*a*} The *B*" values were calculated using LSCD formula $\Delta F(J) = 4B''(J + 1/2)$. As shown, the consistency of the value for the lower ground state rotational, *B*" constant, provides further support to the fit.

the ground state rotational constant B'' (FTMW value),¹¹ and this trend has been observed in the current DFT calculated values and would be an expected effect of vibrational averaging for an excited vibrational state. The calculated constants differ from the current experimental results by 1–3%, but we believe that these calculated values can be improved to near experimental

values if one were to include vibration averaging corrections and use a larger basis set for the Ni atom. A larger basis set for the Ni atom would hopefully provide more accurate rotational constants and vibrational frequencies. The C-H stretching frequencies for the Cp moiety depend on the strength of the π -bonding between the Cp and the Ni atom. The differences between ground- and excited-state rotational constants were as expected, and this is caused by an increase in average internuclear distance in the upper vibrational state. The best fit, with a standard deviation of 0.0022 cm⁻¹, was obtained by constraining the ground-state distortion constants $(D_{J''}, D_{JK''}, \text{ and } D_{K''})$ to the previous FTMW results, while treating the distortion constants for the vibrational excited state $(D_{J'}, D_{JK'}, \text{ and } D_{K'})$ as adjustable parameters. We believe that this is a reasonable approach because distortion constant values may be affected by other low-lying vibrational levels. Attempts to fit the measured lines by keeping the same distortion constants for both ground and excited vibrational states resulted in a much higher standard deviation for the fit. The upper state distortion constant, $D_{I'}$, obtained from the current analysis, is very close to the previously reported microwave value of 0.08(2) kHz. However, $D_{JK'}$ for the upper state shows a significant decrease when compared to the microwave value (see Table 3). This is probably due to more readily distorted bond angles in the upper state as compared to the lower state. An inclusion of an additional distortion constant $(D_{K'})$ further improved the fit deviation. In this case, the ground-state $D_{K''}$ value held fixed to zero because neither DFT nor FTMW values are available for this constant.

The line broadening in the spectra is probably a combination of both Doppler and pressure broadening.

$$\Delta\nu(\text{fwhm}) = 7.1 \times 10^{-7} \times \nu_0 \times \sqrt{(T/M)}$$
(2)

The Doppler broadening can be calculated from eq 2, where $\Delta \nu$ is the width of the line in cm⁻¹ at half the peak height (fwhm), v_0 is the line center in cm⁻¹, T is the temperature of the cell (room temperature in our case) in Kelvin, and M is the molecular weight in atomic mass units. According to this analysis, the predicted Doppler broadening of the lines that we measured is approximately 0.0043 cm⁻¹. Pressure broadening is more difficult to estimate, but according to gas kinetic theory, this is approximately 0.00033 cm⁻¹ per Torr for hard sphere collisions. However, this underestimates the value, by an order of magnitude or more, for large polyatomic molecules. Because the approximate vapor pressure of the sample used in the experiment was 100-150 Torr, the pressure broadening due to sample pressure will be a significant factor for the line width observed. Therefore, we believe that the spectra observed at resolution 0.006 cm⁻¹ are already at the Doppler and/or pressure-broadened resolution limit. Furthermore, judging the appearance of the lines in the spectra, we believe that it is highly unlikely that recording the spectra of these large polyatomic molecules with higher instrumental resolution, on the order of 0.001 cm⁻¹, would resolve any further structure in the spectra, when using a static gas cell.

Conclusions

The gas-phase rotational constants and distortion constants for the excited vibrational state (v = 1) corresponding to the v_1 vibrational band involving the symmetric C-H stretching vibration have been determined using high-resolution Fourier transform infrared spectroscopy. The analysis also yields the C-H symmetric vibrational stretching frequency (v_1) for the CpNiNO transition metal complex. The observed values are much more accurate and precise but agree well with the previously measured experimental values and current theoretical values. The rotational constants obtained from the current study are only about 2% different between the ground and the excited state and suggest that the structure of this molecule is not changed significantly in the excited vibrational state. Very small distortion constants obtained for both the ground and the excited states suggest that CpNiNO is a rigid molecule in both states.

Acknowledgment. This material is based upon work supported by the National Science Foundation (Grant No. CHE-0304969), and the time spent at Kitt Peak was provided by KPNO, based upon proposal no. 2400. This support from NSF and the National Solar Observatory are gratefully acknowledged. We also thank Dr. Michael Dulick for his technical support while we were at Kitt Peak and Dr. Ram S. Ram for instruction on the data analysis program, PC-GREMLIN.

References and Notes

(1) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Inter-Science Publishers: New York, 1962; Chapter 27,

- (2) Wilkinson, G. Organomet. Chem. 1975, 100, 273.
- Cox, A. P.; Thomas, L. F.; Sheridan, J. Nature 1958, 181, 1157.
 Yoshio, T.; Etsuo, K. J. Polym. Sci. Pol. 1967, 5 (Lett), 221.
- (5) Douglas, W. E. Appl. Organomet. Chem. 2001, 15, 23.
- (6) Douglas, W. E. Dalton 1 2000, 57.
- (7) Cox, A. P.; Brittain, A. H. Trans. Faraday Soc. 1970, 66, 557.

(8) Roberts, C. Ph.D. Thesis, University of Bristol.

- (9) Finnigan, D. J. Ph.D. Thesis, California Institute of Technology, 1957
- (10) Ronova, I. A.; Aleskeeva, N. V.; Veniamikov, N. N.; Kravers, M. J. Struct. Chem. 1975, 16, 441.
- (11) Kukolich, S. G.; Rund, J. V.; Pauley, D. J.; Bumgarner, R. E. J. Am. Chem. Soc. 1988, 110, 7356.
- (12) Cox, A. P.; Randall, J.; Legon, A. C. Chem. Phys. Lett. 1988, 153, 253.
 - (13) Feltham, R. D.; Fately, W. G. Spectrochim. Acta 1964, 20, 1081. (14) Hyams, I. J.; Lippincott, E. R. Nature 1967, 214, 267
 - (15) Paliani, G.; Cataliotti, R.; Poletti, A.; Foffani, A. J. Chem. Soc.
- Dalton Trans. 1972, 1741. (16) Polleti, A.; Cataliotti, R.; Paliani, G. Spectrochim. Acta 1973, 29A,
- 277. (17) Li, X.; Tse, J. S.; Bancroft, G. M.; Puddephatt, R. J.; Tan, K. H.
- Inorg. Chem. 1996, 35 (9), 2515. (18) Field, C. N.; Green, J. C.; Mayer, M.; Nasluzov, V. A.; Rösch, N.;
- Siggel, M. R. F. Inorg. Chem. 1996, 35 (9), 2504.
- (19) Piper, T. S.; Cotton, F. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1955, 1, 165.
 - (20) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 - (21) Perdew, J. P.; Wang, Y. Phys. Rev. 1992, B.45, 13244.
 - (22) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1987, B.37, 785.
 - (23) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
 - (24) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
- (25) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3
- (26) Cao, X. Y.; Dolg, M. J. Mol. Struct. (Theochem) 2002, 581, 139. (27) Hay, P. J.; Wadt, R. J. J. Chem. Phys. 1985, 82, 299.
- (28) Schaefer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97,
- 2571. (29) Schaefer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100,
- 5829. (30) Clabo, D. A.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.;
- Schaefer, H. F., III. Chem. Phys. 1988, 123, 187. (31) Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets,
- A. Chem. Phys. Lett. 1990, 172, 62.
 - (32) Barone, V. J. Chem. Phys. 1994, 101, 10666.
 - (33) Barone, V.; Minichino, C. Theochem 1995, 330, 365.

(34) Halls, M. D.; Velkovski, J.; Schelegel, H. B. Theor. Chem. Acc. 2001, 105, 413.

(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(36) Rothman, L. S.; Barbe, A.; Benner, D. C.; .Brown, L. R.; Camy-Peyret, C.; Carleer, M. R.; Chance, K.; Clerbaux, C.; Dana, V.; Devi, V. M.; Fayt, A.; Fischer, J.; Flaud, J. M.; Gamache, R. R.; Goldman, A.; Jacquemart, D.; Jucks, K. W.; Lafferty, W. J.; Mandin, J. Y.; Massie, S. T.; Nemtchinov, V.; Newnham, D. A.; Perrin, A.; Rinsland, C. P.; Schroeder, J.; Smith, K. M.; Smith, M. A. H.; Tang, K.; Toth, R. A.; Vander Auwera, J.; Varanasi, P.; Yoshino, K. J. Quant. Spectrosc. Radiat. Transfer 2003. 82. 5.

- (37) Pickett, H. M. J. Mol. Spectrosc. 1991, 148, 371.
- (38) Aliev, M. R.; Watson, J. K. G. J. Mol. Spectrosc. 1979, 74, 282.

(39) This program was written by Dr. Zbigniew Kisiel and can be obtained, along with the instructions for use, from the following website: http://info.ifpan.edu.pl/~kisiel/prospe.htm.

(40) Herzberg, G. Molecular Spectra and Molecular Structure; Kreiger Publishing Co.: Florida, 1991; Vol. II, Infrared and Raman Spectra of Polyatomic Molecules.